关注微信号xnz360hao 进入:
【土壤改良、科学种植、新农资经销商】群

青年科学家论道“互联网+未来农业装备”
2017-08-28   来源:中国农机新闻网   

  关于深度学习与人工智能

  北京理工大学宇航学院副教授丁艳:

  根据联合国粮食生产报告,由于污染和侵蚀问题,发达国家自上世纪80年代中期以来,农作物生产面积持续下降。粮食短缺将会是人类文明面临的最大问题之一。如何有效利用规划有限资源,对于提高生产能力至关重要。解决问题的答案就是传感器、机器人和人工智能。

  以著名的IntelinAir公司为例,其研究人员正在使用具有类似核磁共振成像功能的无人机来快速准确地进行农田数据分析。搭载特定摄像头的无人机利用可见光和红外融合图像,将数以千计的图像数据写入一个算法,然后将其编译成一个单一的场景图像,以显示所覆盖区域的状况,一旦有问题就可以有针对性地对这些区域进行相关处理,有效地提高了效率和生产力。

  再如BlueRiverTechnology公司在2013年推出了一款LettuceBot,它看来和一般的拖拉机一样,但其实它是一个基于深度学习的机器,可以在开过一片田地时,以每分钟5000株的速度对菜苗进行拍照,并通过算法及机器视觉来判断每株植物是否是杂草,并对识别出的杂草喷洒农药。如果它判定一株植物是不健康的菜苗,它也会喷一下。通过这款机器,农民可以减少90%的农药用量,且产量是人工种植的5倍。目前,此机器已经在市场上推广应用了。

  由此说明,人工智能是驱动农业智能精准化发展的关键。

  关于农机作业服务云平台

  中国农机院机电所运营总监张俊宁:

  以精准农业技术装备为支撑,以互联网+技术为载体,构建了现代农业全程机械化远程控制服务体系。农机远程云服务具有高并发、高频发、类型多、数据量大、保存时间长、数据安全等特性。

  云服务中的数据采集是服务技术的关键,其采用了软动态负载均衡技术,彻底解决了采集终端数量不断增长所带来的压力。应用分布式缓存技术,统一管理数据采集过程中的动态数据,使作业数据更准确。通过在程序中添加数据缓写技术处理,可以应对作业高峰期数据上传高峰,确保无线通讯稳定有序。

  农业云服务围绕农机作业耕、种、收、管等核心环节,面向多层次用户群,提供从农资—农机—农产品全链条的数据采集、自动化处理、统计分析、远程运维、精细化管理的物联云服务。


本文链接http://www.xnz360.com/42-206431-1.html

标签:农机 农业 装备 未来 互联网 学家 青年科

上一篇:在低迷的市场中窥探青贮机市场
下一篇:创新能力成农机企业成败的关键