关于我国南方农机化技术发展
湖北省农业机械工程研究设计院院长陈源:
目前,我国南方旱地作业机械虽然应用广泛,但限于地块小而使用受限;水田作业机械存在效率偏低,受地形影响大等问题;山地作业机械机具少,针对性装备缺乏。我国农业机械化已进入中级发展阶段,但整体发展不平衡,主要体现在粮食作物机械化水平高,经济作物与特色作物机械化水平低;北方平原机械化水平高,南方丘陵地区机械化水平。
在“适度规模”条件下,农业未来发展趋势为统一耕作、规模化生产,新形势下南方农机技术需求为信息化、智能化。因此,未来南方农业机械化研究应注重区域特色粮食作物、经济作物的生产标准化模式及全程机械化装备,要基于适度规模的南方特色作物农艺研究进行农业机械装备开发。
关于蔬菜智能化生产机械发展
河南科技大学研办主任金鑫博士:
我国蔬菜种植面积一直保持稳定,产量年均增长0.5%,预计2026年将达到8.36亿吨;而蔬菜食用消费年均增长1.5%,预计未来10年将达到2.39亿吨。需求的持续增长,促进了我国蔬菜产业的发展。今年,我国加强了设施蔬菜、“南菜北运”工程建设,建立了国家特色蔬菜产业技术体系。总体来看,我国蔬菜生产持续发展,均衡供应水平提高,区域布局持续优化,流通格局基本形成。
但我国蔬菜产业也存在种植模式局限性强、农机装备应用难,农资成本逐年攀升、价格优势持续难,生产环节管理粗放、蔬菜品质保障难,规模化生产程度低、种植效益提高难等问题。
与先进国家相比,我国正处于由个体生产向集约化、规模化生产的转换期,虽然设施蔬菜发展迅猛,但种植农艺、技术装备和管理措施不统一,各环节技术发展不均衡,人工劳作与机械生产等多种手段并存。在美国,37个州从事蔬菜生产,生产布局区域化特征明显。生产模式也呈现露地规模化、设施工厂化、庭院式种植,并实现全程机械化生产,在主要环节实现了智能化管控,充分运用卫星导航、自动驾驶、计算机辅助及智能传感器等系统,依托大数据分析结果进行智能决策。再以日本为例,蔬菜为分散生产,集中供应,设施生产占主导地位,集约化程度高,基本实现全程机械化。同时,日本充分运用机器人、信息感知与决策处理等技术,指导设施蔬菜生产。其嫁接机器人、叶状蔬菜全自动栽植机、根类蔬菜包装机等居世界领先水平。
未来,随着品种品质消费的升级,国民更加注重绿色优势安全生产,我国蔬菜设施发展将面临新的挑战,蔬菜设施亟待转型升级。同时,随着以需求为导向的农业供给侧结构性改革推进,行业又迎来新的机遇,“互联网+农业”助力生存方式变革和产业链重组,成为驱动蔬菜生产竞争力提升的新引擎。
关于现代物理农业工程技术发展
《农业工程》杂志执行主编王艳红:
物理农业是相对于化学农业而言的,是以电、磁、声、光、热等物理学原理为基础,应用特定的物理技术处理农产品或改善农业生产环境,减少化肥、农药等化学品的投入,实现农产品增产、优质、抗病和高效生产的农业生产模式。物理农业是与环境相和谐的农业经济发展模式,是产业链延伸型的农业空间拓展路径,是建设环境友好型新农村社区的新理念。
物理农业工程技术运用于农业发展的各个方面。例如种子电场处理技术,通过模拟大自然的电场效应,使种子内部正负电荷在播种前就有序排列,缩短种子在土壤里的萌发期,催动种子较快发育。再如声波助长技术,对植物施加一定频率的声波,当声波的频率与植物本身生理系统的频率一致时,就会产生共振,从而提高植物活细胞内电子流的运动速度,促进各种营养元素的吸收、传输和转化,增强植物的光合作用,促进植物生长。
但我国现代物理农业工程发展尚处于起步阶段,相关技术研究分散,总体科技水平不高:在技术研究上,基础研究薄弱;在装备研发上,企业生产规模小、科研能力弱、产品质量不稳定、生产工艺和工业装备落后,产学研体系脱节;各项技术应用不平衡,地区之间技术推广应用发展不平衡。
针对以上情况,我国物理农业工程技术发展应在以下方面加强:一是强化学科基础建设,加强基础理论研究、科技研究与农业生产的结合,增强学科队伍建设;二是加强科技创新力度,提升装备生产能力,加快制定装备生产和使用等方面的技术标准;三是加大示范推广力度,促进技术的产业化进程,建立科技示范基地,解决技术实用化、普及化的问题,加强宣传,强化技术培训。